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PREFACE

Until recently, the study of attitude measurement has been
largely confined to inertial attitude reference systems (i.e. gyro-
scopes) and some photographic schemes for determining the attitude of
satellites in orbit. These systems are designed to measure their

orientation with respect to the reference system used on the surface

of the earth.

. This study deals primarily with how two physically separated
i‘ objects can determine their relative attitude, that is perform a
Ef Remote Attitude Measurement, ReAtMent; and extends previous work on

attitude measurement by exploring the fundamental concepts on which

ReAtMent techniques are based and developing the basic tool for
ReAtMent, the Two Vector Method. Using the physical limitations on

how directional information can be measured, a statistical approach is

developed which allows the performance of a ReAtMent system to be

analyzed in a probabilistic sense,

f? The study Builds upon previous work in directional measurement,
E- estimation of the attitude matrix, vector and quaternion algebra,
;A statistics, and practical attitude measurement systems. Using these
; tools, it is possible to develop a firm theoretical framework for
?! studying ReAtMent systems. The pure "pencil and paper" approach

yields theoretically satisfying results which are useful for under-
standing how to analyze ReAtMent system performance. The integrals

involved are quite complicated and a computerized implementation is

necessary to analyze a practical ReAtMent system. A simple experiment

is performed using a single electro-optical sensor and computerized
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data reduction to illustrate and validate many of the concepts de-
veloped during the doctoral research.

While in residence at Ft. Monmouth, the author served as the
project engineer on an exploratory development model of a state of the
art ReAtMent system. This served as the testbed for many of the
original ideas described below and provided insights into the fund-
amental problems with real 1life applications of ReAtMent, some of
which would never have been brought to light by a purely theoretical

approach.
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INTRODUCTION

Remote Attitude Measurement, ReAtMent, is a tool for solving real
world, three dimensional geometry problems. In such problems, observers
independently measure, report, and act on data in their own local
coordinate systems. This data is then transformed into a common
coordinate system via a matrix computed by the ReAtMent system, and

combined to solve the problem.




CHAPTER I: OVERVIEW OF FUNDAMENTAL CONCEPTS

A. PHYSICAL GEOMETRY

Spatial relationships between objects are analyzed by physical
geometry. The commonly taught mathematical geometry is a subset of
physical geometry where the objects are .cpresented by infinitely
small points. These points and the infinitely thin line segments which
connect them are unique. This uniqueness provides the basis for
asserting that two geometric quantities are actually exactly equal,
thereby deducing that the other geometrical quantities must satisfy a
given relationship. This absolute precision allows the development
and proof of geometric theorems.

Mathematical and physical geometry converge when the following
fundamental assumption holds: Objects defining the endpoints of a line
segment are very small in comparison to the length of the line seg-
ment. When this fundamental assumption does not hold, it is possible
to partition the objects into volume elements for which the assumption
does hold, effectively creating an ensemble of line segments to
replace the single line segment normally expected when using mathe-
matical geometry. This ensemble is statistically describable by its

expected value (or average) and its distribution.

Object 1 a single line Object 2
A F
1C G | H

an ensemble of lines

FIGURE 1.1. Partitioning Objects Into Volume Elements Which Meet the
Fundamental Assumption
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When a simple figure is formed by lines connecting objects in
space, the result of partitioning the object into volume elements is
that each of the lines, of the simple figure, becomes an ensemble of
lines. Thus, the figure becomes an ensemble of geometric figures.
However, all of the figures in the ensemble are not necessarily well
behaved. This arises because the lines comprising these ill-behaved
figures terminate on different volume elements of the objects. It is
important to bear this in mind when doing a statistical analysis of
real-world physical geometry problems such as are encountered in
ReAtMent applications.

B. DEFINING AND MEASURING THE DIRECTION TO AN OBJECT

A line segment is described by its length and direction. The
length is a scalar quantity and is therefore independent of the
coordinate system used. However, the description of direction is

strongly dependent on the coordinate system chosen. A direction is

Jil described by a unit vector pointing in that direction. The unit
Ef length is chosen to give the vector describing the direction the same
!l two angular parameters as the direction itself.

5 The direction to an object can be defined as the ensemble of the
F; unit vectors lying along the line segments joining volume elements of
Eé the observed object with volume elements of the viewing object.
q The detectable volume elements of an observed object are those
&E . which have a clear line-of-sight to the viewing object and a non-zero
E! contrast. The sensing object has no knowledge of the existence or
a whereabouts of undetectable volume elements of the viewed object.
{ Similarly, the volume elements of the viewing object which have clear
e :

o

-

.
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line of sight to the observed object are the only ones which could
possibly determine the direction of the viewed object. Therefore, for
real objects, only a subset of the directions of the lines between all
volume elements of the two objects are measurable. Consequently, the
statistical parameters of the ensemble of measurable directions may
differ from those of the full ensemble of the directions between all
volume elements of the two objects.

Now consider how the directions in the ensemble are measured. If
- the separation between the two objects increases to the point where
each object is very small compared to the distance between them, (i.e.
the fundamental assumption is satisfied) then the detectable volume

element of each object becomes the object itself and the ensemble

Y
[

reduces to a single line.
A directional sensor monitors a set of solid angles called

pixels which cover the field-of-view, FOV, of the sensor. Each pixel

- - '. aeTe e e

reports the total energy received over its own instantaneous-field-of

~ view, IFOV, as a single value, the intensity of that pixel.

ﬁi The presence of an object is detected by the difference between
the intensities of the pixels viewing the background and those viewing

the object. Since the intensity of a pixel is a single, scalar number,

no information is obtained as to whether more than one object is

- within the IFOV of that pixel. Consequently, when partitioning the
;j viewed object into detectable volume elements, there is no advantage
'; in using a partition size smaller than the IFQOV that pixel subtends
;f at the range to the object.

:  Now consider the limitations imposed by the combination of sensor
# 4
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and object on directional measurement. The portion of the sensor which
directs energy onto the detectors associated with individual pixels
(e.g. the lenses of an optical system) are characterized by a modula-
tion transfer function, MTF. The temporal MTF of the sensor is a
measure of how the pixel responds to a change in the energy received
with time. The spatial MTF is a measure of the ability of the sensor
to discern contrast within a given angular subtense of the image.

The detectable elements of the object have a non-zero contrast.
That is they radiate a different amount of energy toward the sensor in
the passband of the detector than does the background. The definition
of the contrast of a pixel is [brightest pixel - pixel under discussion]
/[brightest pixel 4+ dimmest pixel]. The spatial MTF of the sensor
multiplies the spatial power spectrum of the scene to give the
spatial power spectrum of the image as reported by the sensor. As an
example, consider a scene consisting of a checkerboard patteri with a
contrast of 1.0 (the best possible) between adjacent squares. If the
MTF of the sensor were 0.8 at the corresponding spatial frequency,
then the squares in the image would appear to have a contrast of 0.8
instead of 1.0.

Once the contrast between squares falls to the noise level of the
sensor, the squares become indistinguishable. This occurs when the
size of the square just subtends the diffraction limit of the sensor
(assuming an ideal sensor). However, in practice, the effects of
aberrations in the parts of the sensor which direct energy onto the
detectors, effectively limit the size of the image of a bright point
source (the ideal viewed object) and thus the spatial resolution

5
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acheivable by the sensor.

Usually, the pixel size selected for the directional sensor
is made slightly larger than the theoretical diffraction limit to
insure that pixel size, rather than the MTF of the energy collecting

portion of the sensor, limits the spatial resolution of the sensor.
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CHAPTER II: PROBABILISTIC VECTORS - A NEW ANALYTICAL TOOL
A. THE CONCEPT OF PROBABILISTIC VECTORS

In order to treat the ensemble of directions from one physical
object to another as a single analytic entity, the concept of a
probabilistic vector was developed.

The probability associated with each individual measurable
direction in the ensemble is proportional to the contrast of the
volume element in the viewed object to which it points. Consider
the case where a point source in a uniform background is imaged onto a
single detector of the directional sensor. The pixel corresponding to
this detector is the only one whose intensity is different from the
rest. Therefore, the object (the point source) must be within the
IFOV of that pixel with a probability of 1.0. If the image were now
spread out to cover several pixels, the probability of the object
being within that set of pixels is still 1.0. Therefore, the integral
over the set of the probability associated with each pixel must be a
constant equal to 1.0. However, the individual pixels may have
different intensities, with the brightest having the highest prob-
ability of containing the object. Thus, it is appropriate to select the
set of pixels whose contrast exceeds a reasonable threshold and
normalize the contrast of these pixels so that they sum to 1.0.
This normalized contrast corresponds to the probability of the
direction to the object being within the IFOV of the respective

pixels.

If the pixels are allowed to have infinitesimal IFQV such that they

form a continuum, the probability density becomes a continuous

7
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distribution over the solid angle covered by the set of pixels. If, on
the other hand, the design of the sensor is such that the IFQOV of each
pixel is of a finite size, then the probability density must be
represented as a series of discrete values because each detector's
output is a single number,thus no information is obtained from
the detector to resolve any finer detail in the probability distribu-
tion. It is then reasonable to assume that the probability distribu-
tion within a finite pixel is uniform.

On the basis of the above discussion, a probabilistic vector, P,
can be defined as a set of n vectors, Pm’ each having an associated

probability, Ppe as shown by equation 2.1.

A n
P= {(me‘ + Pmﬁ + sz'l‘c +p) me=1.0} (eq. 2.1)
m=1

th

vector in the set

A A A
where me1 +Pmy3+ szk is the m t

and Pn is the probability associated with that m~ vector
B. CONTINUOUS PROBABILISTIC VECTORS

A vector describing a direction has two independent angular
parameters. The most convenient set of angular parameters to work with
in describing the output of a directional sensor are azimuth, @,
and elevation . This arises because most directional sensors are
mounted in an azimuth over elevation gimbal. @ physically varies
between zero and 27 while @ physically varies between 77/2 and - 272.
However, this can pose a problem because @ and p are pointwise orthogonal1
but not mutually orthogonalz.

To facilitate analysis, @ and P are mapped into a Cartesian
1. Pointwise orthogonal means that at every point dO is perpendicular to
g?'Mutually orthogonal means that the d@ at any point is orthogonal to

dp taken at any other point.
8




P

o e ey
e AT

T R

- b Bt ¥ .
A R

o NI om A i au ot ane 4

T n—— g s

coordinate system in which the spherical angular parameters of 0P
are directly substituted for the usual x,y.

A further difficulty is encountered due to the singularity at
p=Tr72. It should be remembered however that the actual values
of @ and P correspond to the principal values of the arc trigono-
metric functions of @ and f#. Thus, a physically contiguous set of
pixels (i.e. the set of solid angles which cover a larger continuous
solid angle) can be mapped into separated disconnected regions in a
Cartesian plot of @,0. To circumvent this difficulty, let the
0,0 plane extend from -47 to +4 7 for both 0 and #. In this expanded
plane, any physically contiguous set of pixels will map into a simply
connected region, greatly simplifing the required calculations without
impairing their mathematical integrity.

An infinitesimal single pixel centered at 8,# has an IFOV bounded
in its cwn local coordinates by (6-do,Pp-dp),(6-d0,p+dd),(06+ul,P+do),
(0+d0,P-dP) . Thus the area in the 0,p plane represented by the infin-

itesimal pixel is 4dedp. In concert with the discussion above concern
ing the information content of the pixel, the probability distribution
over the region ir the 0,0 plane representing the pixel is uniform
and equal to 1/(4dedP). The form of the continuous probabilistic
vector is given by equation 2.2 where the terms are as defined for
equation 2.1, except that pOD is the probability associated with
the point at o,.

P= {cos(O)cos(ﬂ)/i\ + sin(o)cos(ﬂ)/j\+ sin(ﬂ)/k\+ pOD}' (eq. 2.2)

C. DISCRETE PROBABILISTIC VECTORS

The probabilistic vector describing a single pixel has a uniform

9
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distribution (in its own local coordinate system) whose integral over
the pixel is equal to its normalized contrast. To compute this
normalized contrast, let all pixels whose contrast exceeds a given
threshold (depending on the noise level of the sensor and the confi-
dence level required) be assigned to the set of pixels known to
contain the direction to the object. The total probability associated
with this set can therefore be assigned a probability of 1.0. To
determine their normalized contrast, all pixels in this set have their
actual contrast divided by the sum of the contrasts of the pixels
assigned to this set.

Thus the direction to an object can be described by a set of
pixels with associated probabilities. Since each pixel has a uniform
distribution, the expected direction of the ensemble of directions
represented by that pixel is simply the centroid of the solid angle
covered by that pfxe]. This expected direction can be expressed as
a vector and used to represent the pixel with the understanding that
the solid angle (i.e. IFOV) of the pixel is "small". Thus, the set of
pixels can be represented as an ensemble of vectors with associated
probabilities. As there are a finite number of vectors in this
ensemble, the resulting probability distribution is a set of discrete
values. Therefore, the probabilistic vector is described as discrete.
D. DESCRIBING PROBABILISTIC VECTORS IN TERMS OF BASE PIXELS AND MATRICES

Consider the entire FOV of the sensor to be a sinale pixel, or
a sensor with a single pixel. Let the sensor be mounted in a two axis
gimbal on the sensing object. To express the FOV of the pixel in the
sensing object's coordinate system, the set of directions represented

10
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by the pixel in its own local coordinate system must be operated on by
the matrix representing the combined effect of the rotations performed
by the gimbal in moving the sensor from its aligned position to point
at the viewed object.

The typical elevation over azimuth gimbal rotates first about the
Y axis by the elevation angle, #, (assuming the pixel to be centered
on the X axis of the sensor which is initially aligned with the X axis

of the sensing object), and then about the Z axis by the azimuth

angle, 0. The transformation matrix (i.e. attitude matrix), [T],
which operates on the pixel (i.e. any pixel of the sensor) is formed
:! by the multiplication of two simple matrices as shown below.

: cos{P) 0 -sin(P)| jcos(@) sin(@) O
[T]= 0 1 0 sin(@) cos(9) 0
T sin(#) 0 cos(0) 0 0 1
cos(P)cos(8) cos(P)sin(@) -sin(P)
= lsin(0) cos(0) 0 (eq. 2.3)
sin(P)cos(08) sin(P)sin(0) cos(P)

As an example of a common application, consider a surveyor's
theodolite. The sensor is the telescope. The intersection of the
crosshairs gives a pixel with a "small" IFOV centered on the X axis of
the telescope. The vector representing this pixel directly along the

1
X axis of the telescope is [8] and the transformation matrix, [T],
is as given by equation 2.3. The direction, D, of an object centered
in the crosshairs is given in probabilistic vector form by equation 2.4.
D= {cos(O)cos(ﬂ)’i\ + sin(Q)cos(ﬂ)ﬁ" + sin(ﬂ)'l? + 1.} (eq. 2.4)
where D is expressed in the coordinate system of the body of the

theodolite. If the telescope is now replaced by a sensor containing

11
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many pixels, the same process can be used to express the direction of

that pixel in the coordinate system of the body of the mounting

gimbal.

E. COMBINING MEASUREMENTS MADE IN DIFFERENT COORDINATE SYSTEMS: THE
GENERAL ReAtMent PROBLEM

Consider the most general case of a triangle in three dimensions
formed by two observers and a third object. One observer determines
the relative locations of both the other observer and the object. The
first observer wishes to tell the second observer in what direction to
point the device toward the object. To be of any use, this informa-
tion must be expressed in the local coordinate system of the second
observer. A ReAtMent system must be used to measure the attitude of
the second observer and to transform the data measured by the first
observer into the coordinate .system of the second observer, so that he
can use it to point the device.

In the above case, the triangle in three dimensions was solved in
the coordinate system of the first observer. Now consider a variation
of the problem such that the two observers can determine each other's
relative location and independently measure the direction to the
object in their own coordinate systems. This is the generalized
ReAtMent problem where the measured data must be transformed into a
common coordinate sytem to solve the triangle (via the angle, side,
angle technique).

A1l three dimensional geometric figures can be solved by decompo-
sing them into triangles in three dimensions (by constructing lines as
necessary) described in a common coordinate system.

12
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F. MATHEMATICAL BASIS OF ReAtMent: THE TWO VECTOR METHOD

The fact that a triangle in three dimensions is actually indepen-
dent of the coordinate system used to describe it, forms the basis of
the Two Vector Method. A triangle, formed by the observer and two
objects, is measured once by the observer in his reference orientation
and once in his final orientation. If the relative location of
the observer and the two objects has not changed, the triangle has
not changed. Thus, the difference in the descriptions the directions
to the respective objects must be due solely to the change in orienta-
tion of the observer.

Whatever series of rotations is made by the observer as he
progresses from his reference orientation to his final orientation,
there exists a unique single rotation about a unique axis which would
have accomplished the reorientation of the observer in a single step.
This axis is called the principal axis of rotation, PAR. The angle is
called the angle of rotation, AR.

When the vector describing the direction to an object is rotated
about the PAR by the AR in the opposite sense to the rotation of the
observer, the vector still physically points in the same direction,
but its description has changed. If this vector is decomposed into
components parallel and perpendicular to the PAR, it will be seen that
the two parallel components (before and after rotation) are identical.
The difference in description must thus be due to the components
perpendicular to the PAR. Therefore, the difference between the two
descriptions of the same physical vector (i.e. the difference vector)
must be perpendicular to the PAR.

13




Calculating the difference vectors (one for each of the two
objects) and taking their crossproduct results in a vector parallel to
the PAR. Normalizing this crossproduct gives the direction of the
PAR.

If the two measurements of the same physical vector are decom-
posed into components parallel and perpendicular to the PAR, the AR
can be calculated from the angle between the components perpendicular
to the PAR.

If the two objects are far enough away from the observer so that
the fundamental assumption (i.e. objects small compared to distance
between them) is satisfied, then the physical geometry triangle
between them becomes a simple mathematical geometry triangle and the
directions to the objects can be represented by deterministic vectors
as shown in figure 2.1

Figure 2.la shows that'ﬁ and’t are unit vectors describing
the direction to object 1, and are thus the same physical vector.
Similari]y,'a and'a describe the direction to object 2. In the
reference orientation of the observer (figure 2.1b)1: andi} are

measured. In the final orientation of the observer, (figure 2.1c)7ﬁ

A
and @ are measured. In figure 2.1d these measured vectors are shown
5 in the local coordinate system of the observer.
If [A] is defined as the attitude matrix of the observer (i.e.

[A] operates on any vector measured by the observer to express that

T

vector in the reference coordinate system), then
A A

- M= [AJL (eq. 2.5)

= A

;‘ 0 = [ATP (eq. 2.6)

[ 14
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Figure 2.1d. Vectors Reported by Observer in His Own Local Coordinate System

15




MBI & e s oy 4 ‘T.r_._T"' - L
A AL AN oy 1
. Lot e
i ‘ - bt e e

—~—rg

W L, T T, T e, T T e e W v v W T T Y e W, W W, W e wT, W W e W W T v wr W e w e w s w w cwe e = = e =

Since (tJﬂ) and (?—6) are perpendicular to the PAR then by the dis-
cussion above,

AN AN
PAR = (L-M) X (P-Q) (eq. 2.7)

. A A A

It should be noted that if (t-M) is parallel to (P-Q) the PAR can be
found by

A A AA
PAR =(L X P) X (M X Q) (ea. 2.8)

A N
Let s be the magnitude of the projection of M or L on the PAR,

thus
AN AN
s= MePAR = L. PAR (eq. 2.9)
. AN .
form the perpendicular components of M and L respectively as
A
G = (L-sfih) (eq. 2.10)
D
H= (ﬁLsPAR) (eq. 2.11)

then the AR can be calculated from
AR = arctangent[(G X H)/(GeH)] (eq. 2.12)
It should be noted that the sense of the angle of rotation and the
sense of the principal axis of rotation will match if this notation is
followed. Thus, if the Two Vector Method is used in a test case, the
calculated PAR may be of the opposite sense than expected, but if so,
then the AR will also have the opposite sign. Thus when [A] is
calculated, as shown below, the expected [A] will be obtained.

If the components of the PAR are expressed as
PN(=«?+P§+Y€ (eq. 2.13)

then the coefficients of [A] can be calculated as shown in equation

2.14.
a a a

[A)= a%% a%g a%g (eq. 2.14)
431 33 2433
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where3

all-cosz(AR/Z) (1- 2=< )sin (AR/2)
--)’sm(AR)+ 2~<ﬂs1n (AR/2)
5= A sin(AR)+ 2¢<J’s1n (AR/2)
ay* )’sm(AR)+ 2,eecsm (AR/2)

3,,=C0S (AR/Z) (1-24 )s1n (AR/2)
23--a<s1n(AR)+219J’51n (AR/2)
31=-# sin(AR)+2 #e¢ sin (AR/2)
a3," e(s1n(AR)+2)79 51n (AR/Z)

2,4=C0S (AR/2) (1- 2)’ )sm (AR/2)

G. PHYSICAL VECTORS: GENERALIZING THE TWO VECTOR METHOD FOR SEPARATED
OBSERVERS

The Two Vector Method given above holds exactly for the case of
one observer viewing two objects, first from a reference orientation
and then again from his final orientation. 1In order to apply the Two
Vector Method in determining the relative orientation of two separated
observers, the two observers must be mathematically moved to share a
common origin of their coordinate systems. This can be accomplished
by expressing the respective directions to the two objects as members
of uniform vector fields (i.e. physical vectors).

Every member of a uniform vector field is mathematically indis-
tinguishable from that member of the field which passes through the
origin of the coordinate system. The member of the uniform vector
field describing the direction to an object from one observer is
mathematically the same as a different member of the same field which
passes through the origin of another observer's coordinate system.
Thus, this uniform vector field can be thought of as a physical
vector.

Thus, the Two Vector Method can be generalized to cover the case

3. This form of the expressions for the matrix coefficients is after a
derivation by Mr. William Bayha.
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of separated observers by requiring that each observer measure the
‘'same two physical vectors. If both observers are colocated, it can
be seen that this reduces to the case of a single observer measuring
the same two physical vectors from two different orientations.

When separated observers view the same object, a triangle in 3
three dimensions is formed. In general ,-the two sides of the tri-
angle intersecting at the object are not parallel, but if the object
is sufficiently far away from the observers, then these two sides .
beceme effectively parallel (i.e. within the measurement accuracy of
the observer). Consequently if the two observers were to both be

aligned with each other, the object would appear to be in the same

direction to each observer,allowing the direction to the object to

be defined in terms of a uniform vector field, and thus as a valid

- physical-vector.

gl Thus ,for two separated observers who each measure the respective

directions to two distinct, distant objects, the Two Vector Method can

be used to determine their relative orientation. This allows a ReAtMent
system based on an implementation of the Two Vector Method to be

constructed using appropriate physical vector measurement means on

each of the two platforms:whose relative attitude is to be determined,

vy

. P N |
. A AR

a means of communicating the measured physical vectors to a compu-

A

tational means which performs the Two Vector Method algorithm, and a

i; means for communicating the measured attitude back to the respective B
h 4

ptatform so that it can act on the information'.

4. F.Elmer. "Method of Determining Relative Orientation of Physical
Systems", US Patent # 4,134,618. 16 Jan 79
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CHAPTER III: THE PROBABILISTIC ANALYSIS OF A ReAtMent SYSTEM
A. INTRODUCTION

The next task is to perform a theoretical analysis of the Two
Vector Method using probabilistic vectors in order to understand the
statistical aspects of the problem and to provide a tool for the
analysis of an actual ReAtMent system.

Physical geometry problems are best handled by a probabilistic
analysis as they are described by figures composed of ensembles of
lines. When the size of the objects involved approach a point rel-
ative to the length of the lines, the ensemble of lines shrinks to a
single line and the results of a probabilistic analysis must converge
to that obtained via a conventional mathematical geometric analysis.

Another factor in analyzing the performance of a ReAtMent system
is repeatability. Given the same physical situation, i.e. the ob-
servers and the objects have not moved, repeated measurements will
produce differing results due to the effect of random errors in the
directional measurement means. Thus an ensemble of geometric figures
will be obtained for the same physical situation.

Assuming stationarity, the results of using the ensemble of
repeated measurements will have the same statistics as the results
obtained from using the ensemble of directions obtained by the prob-
abilistic analysis. As a gedanken, imagine an object which subtends
two pixels in the sensor's FOV. The sensor as a subsystem will
indicate one pixel or the other as being the direction to the object,
and track accordingly. If the two pixels are of different intensity
during one measurement, stationarity implies that the relative

frequency of selecting the brighter pixel as the direction to the
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nbject is proportional to the normalized contrast of that pixel. Thus
if one pixel were twice as bright as the other, that pixel would be
selected as the direction to the object by the sensor subsystem 2/3 of
the time.

Leaving the gedanken, the desired end result of using the ReAtMent
system is to point something at the object. In an analytical sense,
this requires a calculation of the probability distribution of
the direction to that object. Given this, the effectiveness of
pointing that something at the object can be evaluated (e.g., the
probability of a hit on a detected aircraft by an air defense weapon).
The necessary tools to perform the probabilistic analysis of a ReAtMent
system are developed below.

B. MAPPING PROBABILITY INTO THE 6,0 PLANE

The concept of mapping probabilistic vectors as a probability
distribution on a Cartesian plot of the angular parameters @ and P
has been introduced.5 The major advantage in using this approach
is that the standard tools of statistical analysis can be directly
applied to data in this form.

Briefly, the major theorems employed are the following:

1. When constructing a set from subsets, the region where two subsets
intersect is assigned the probability density formed by the sum of
the respective subset probabilities at each point.

2. When an operation is performed on independently chosen members of
two or more sets, the probability of the result is the product of the
respective probabilities.

5. See section B of chapter II

20

PR S T S L . (P RPN S S g Yy C . U A S G S NP, SR R S




3. The integral of the probability of any given parameter over the
0P piane is exactly equal to 1.0.

The use of the 0,0 plane produces a problem in determining
the analytic form of the probability density as a function of the
8,0 as the parameters are pointwise orthogonal rather than uni-
formly orthogonal and have singularities at 9=+ 7 /2 and - 77 /2.

Consider the case of mapping the probabilistic vector represented
by a single pixel of a sensor into the 0,0 plane. In local sensor
coordinates, the pixel represents a uniform probability density over a
region bounded by (01Z§§9,01fo0),(Olzzxg,ﬂ* p),(0+/\0,0+/\0), and
(QA@,B-AQ)).

For the reasons given above in the discussion on expressing
pixels in terms of base pixels and matrices, each vector representing
an infinitesimal solid angle within the IFOV of the pixel is operated
on by the transformation matrix [T] to determine the corr :sponding
coordinates in the 0,0 plane. This point in the pla-e is then
assigned the probability density of 1/(4dAdp) where dO and df are

given in the sensor local coordinate system. The probability dis-

tribution in the 9,P plane is constructed by repeating this procedure
Ei until all of the IFOV of the pixel has been covered by the infin-

itesimal solid angles.

LA

This <an be seen by examining the mapping of a sensor pixel

v

centered on the X axis of the sensor (i.e. 8=P=0) and of half angle

E;"

-

3 ZC&‘L Zﬁxﬂ. In chapter 2 vectors, the probability density of the
] pixel in sensor coordinates, fgﬂ(g,ﬂ), is given by definition 3.1.
4
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T (e,,8,)= fMAOAm for -AKOAS and -ABP<AD  (def. 3.1)
0

otherwise
The set of directions represented by this pixel ,PS , is a set of
probabilistic vectors defined as
A ) A ) N

P =t?os(gs)cos(0s)1 + swn(GS)cos(ﬂS)J + s1n(05)k + fS(QS,ﬂSi}(def. 3.2)

Refer back to the discussion of how pixels may be represented in
terms of a base pixel and matrix which maps the base pixel onto the 80
plane as Pr' Call this base pixel PS (expressed in sensor coordinates)
and the matix [Ms]' The transformed pixel in body coordinates,Pb,
will be given by
Py=[M 1P (eq. 3.1)
As a result of this transformation, the density of Pb will be non-uni-

form. To show this clearly, some dummy variables will be introduced to

simplify the algebra required. Thus let

a b ¢
(MJ= Jd e f (def. 3.3)
g h i
R=sin(QS) (def. 3.4)
S=cos(OS) (def. 3.5)
P:sin(ﬂs) (dEf. 3.6)
Q=cos(0s) (def. 3.7)
Then from equation 3.1 obtain
cos(Qr)cos(ﬂr)=aSQ +bRQ +cP =@ (eq. 3.2)
sin(Or)cos(ﬂr)=dSQ +eRQ +fP =Q (eq. 3.3)
sin(p,.) =gSQ +hRQ +iP =@ (eq. 3.4)

The circled numbers are dummy variables whose value is equal to
one side of the correspondingly numbered equation. This notation is
used to help keep track of where the dummy variables come from as the

22
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analysis progresses and to provide an easy means of locating their
defining equations. Equations 3.2 and 3.3 can be combined to eliminate

ﬂr and yield

tan(@ )=dsQ +eRQ +fP =(® (eq. 3.5)
aSqQ +bRQ +cP

This gives two equations (3.4 and 3.5) which are immediately

solvable for 0r and 0r in terms of OS and 05. Using the property of
6

s

the transformation matrix that its inverse is given by its transpose
it is possible to solve directly for OS and 05 in terms of Qr and 0r’

thus
tan(OS) - bcos(Qr)cos(Dr) + esin(Or)cos(ﬂr) + hsin(ﬂr) -® (eq. 3.6)
acos(Or)cos(ﬂr) + dsin(Or)cos(ﬂr) + gsin(ﬂr)

sin(f.) = ccos(@ )cos(P.) + dsin(® )cos(P.) + isin(p,) =@ (eq. 3.7)

The Jacobian of the transformation is defined as

-

28 96
9 KL

CRUNE I P 0. (def. 3.8)
6, b,

Thus the density of Or,ﬂr is given by
f (e.,n.)= f (0_,p_) = (eq. 3.8)
Qr,ﬂr r’r Gsps s*7s ®

J(OS,DS)

and the Jacobian is shown to be

sPQ(ce-bf) + $2Q%(ae-bd)){-gSP-hRP+iQ)
-(sP%(af-cd) + RPZ(bf-ce) + sqP(af-cd) +RQZ(bf-ce))(-gRQ+hSQ)]/
[(@%41.-031.-0 )1 (eq. 3.9)

+ +

Thus a calculable (although quite complicated) analytical expression
(equation 3.8) has been found for the density of the pixel in the

6. This is true for any unitary, orthogonal matrix.
23
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;?; 3.0, plane.

ii Consider the special case where the transformation matrix [MS]
3 is the identity matrix. This means that the sensor is in its refer-
; ence position and shares the same coordinate system (ignoring trans-
% lation of the origin) as the body to which it is attached. After a
{ little algebra, the Jacobian (equation 3.9) turns out to be equal to
! 1/cos(P). Thus, the density of fgD is proportional to cos(f).

ii This is not inconsistant. The parameters 6,0 have a singu-
i

larity at P=+7/2 and - /2, where the Jacobian becomes zero. Thus
when a finite solid angle (e.g. a pixel) is centered on the plane
where f# equals zero it subtends a minimum measure of the angular
parameters @ and f. However, if moved to a region where P is near

/2 the apparent measure of the pixel in terms of O increases while

the measure of P remains constant.

To help in visualizing this point, consider a gedanken where a
small square of paper is placed on a standard desk top globe. The
small square of paper represents a fixed amount of solid angle origin-
ating at the center of the globe. Place the square on the equator,
and assume that the square covers 10 degrees of latitude by 10
degrees of longitude. Now move the paper up in latitude and measure
the difference in longitude between the corners of the square. Note
that the top corners appear to subtend a greater number of degrees of
longitude than the bottom corners of the square. Also note that the
difference in latitude between the top and bottom of the square is

still 10 degrees. Now place the square so that it is centered at one
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of the poles. The 4 corners of the square will now differ in lon-
gitude by 90 degrees.

Now imagine that the square is cut up into areas subtending
exactly 1 degree by 1 degree. If the square is on the equator, 100
very nearly square pieces will result. Each will have very nearly
the same area. In contrast, if the square had been centered on
the pole, 1800 pieces would have been cut7. They would not all have
the same area.

Consider that the entire square represents the probability
of something being in the set of directions subtended by the solid
angle covered by the square. Since the square of paper is of a
uniform thickness, imagine that this thickness represents the prob-
ability density. Thus, each little piece we have cut from the square
represents the probability of that something being in the solid angle
subtended by that little piece. Thus, a probability density which is
physically uniform (1ike the paper) may be expressed as a non-uniform
density when it is described by the parameters © (longitude) and
® (latitude), depending on where the center of the distribution is
located on the 0,0 plane.

Leaving the gedanken, it can be seen that what was thought to
be a uniform distribution in the pixel itself is actually uniform;
however, because it is described by the pointwise orthogonal pa-

rameters 8,0, this distribution should be written as

fooa (0.,0.) = cos(@,) (def. 3.9)
Osﬂs s*"s

40 sin(AD)

7. 360 degrees of longitude by 5 de rees of latitude.
25




The cos(ﬂs) in the above definition arises because of the
dependence of the distribution on cos(#). The sin(A #) replaces
theA p expected because the integral of fgsﬂs over A\ Q,AQ) must
equal 1.0 to be consistant with the definition of the pixel as having
a uniform spatial probability distribution. For a pixel centered on
the X axis (i.e. 0=p=0), the cos(P) is very nearly 1.0 while the
sin(A f) is very nearlyA f#. This brings the above expression for
f(0,0) {(def. 3.9 ) into agreement with the former expression (def.
3.1) and explains the assumptions and resulting approximations which
hold for the former expression.

To sumarize this discussion on mapping directional probabilities
onto the 9,0 plane, a rather complicated expression (eq. 3.8) has
been derived for analytically performing the required mapping. This

lays the foundation for the analysis which follows as all directional

probability distributions can now be represented on a common 0,0

* plane in analytic form.

n C. CALCULATING THE DIRECTION OF THE SUM'OF TWO PIXELS

;;;:’ Given that the probability density of each pixel has been mapped
; into the 0,0 plane as given above, it is possible to compute the
». direction of the sum of two pixels as a probabilistic vector and
represent this probabilistic vector as a pixel (or collection of
T pixels).

L. First examine the two dimensional case. Let the first pixel be
E” such that OI-AO < 9 < 01+A9 , and Tet the second pixel be such
- that 0,-/40 < 0 < 02+A9 . Let 9 be any member of the first pixel
i. and ’-)b be any member of the second pixel. Then it can be shown
I 26
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that8 the azimuth of the sum ,OS, is given by
6 = (0a + Ob)/Z (eq. 3.10)
Thus the bounds of OS are given by

otfo, v 0, + o, >0, >6-A0; + 6, +fe, (eq. 3.11)
3 7

If Oa and Ob are written as
(def. 3.10)
(def. 3.11)

0

a g1

Qb = 92 + d02

then equation 3.10 can be solved for d92 and used to form the

density of the sum as

0,+4¢0
fOS(gs) = |/f;d01(gl)fd02(ng'gl-OZ'dgl)d(dol) (eq. 3.12)
!
The expected value of Os can be written as
(0,+0,+A0,+As,)/2
E(OS) = Osfgs(os)dgs (eq. 3.13)

(0,+0,-A0,-As,)/2

As a check , consider the special case of dO1 and d92 having symmetrical
densities; then E(QS) = (01+02)/2 as expected. The two dimensional
case is thus seen to correspond to the well known one of the sum of
two independent random variables.

This analysis can be expanded dire:tly to three dimensions.

Writing the equations directly in terms of OS, 05, and * c.astant of

proportionality, k:

8. Assuming infinitesimally small pixels
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3
kcos(OS)cos(ﬂs) = cos(91+d01)cos(ﬂ1+dﬂ1) + cos(02+d02)cos(02+d02)
(eq. 3.14)
ksin(os)cos(ﬂs) = sin(01+d01)cos(ﬂ1+dﬂl) + sin(92+d02)cos(ﬂ2+d02)
(eq. 3.15)
ksin(DS) = sin(01+dﬂl) + sin(ﬂ2+dﬂ2) (eq. 3.16)

While it is possible to solve these equations directly for the
member of one pixel which will combine with the given member of the
other to form a given member of the sum, it is more instructive to
solve the problem geometrically. From the two dimensional case, it is
clear that the sum vector lies in the same plane as the two vectors

which were added. Thus

Figure 3.1 Sum of Two Three Dimensional Unit Vectors
In this figure, it is apparent that the angle, 2<ac, between the two

members of probabilistic vector sets, V1 and V2 can be found directly

from the dot product of the two unit vectors. Thus

- cos(2ec) = cos(01+d01)cos(ﬂ1+dﬂ1)cos(02+d02)cos(02+d02)
o +5in(0;+d6; )cos(P, +df,)sin(0,+d0,) cos(P,+dd,)

e . .
- +sin(@,+d, )sin(p,+dp,) (eq.3.17)
Now doing some straightforward vector algebra

. V, = V;-2(vp/2) = V1‘2(V1’(°°5(‘)"<)"(s)=) -V +2cos( a)V )(ecz;b 3.18;
" 2cos( o< )sin(0_)cos(P_)-sin(9,+d0,)cos(f,+dp
- = tan(0,+d0,) = > 2 L 1 P !
- 2cos( Ckf)COS(QS)COS(ﬂs)-COS(91+d91)COS(ﬂ1+d01)
- (eq. 3.19)
'@ = sin(,+dp,) = 2cos(e<)sin(P,) - sin(p +dp,) (eq. 3.20)
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Equation 3.17 provides a reasonable means of calculating the angle.
Using this in equation 3.18, the member of the second pixel which
combines with the given member of the first pixel to form the desired
sum can be found with equations 3.19 and 3.20. Introducing Oa,ﬂa as the
general member of the first pixel with parameters 01+d01, Dl+dﬂ1, and
denoting the probabilities of the members of the first and second
pixels respectively as f1 and f2, the probability density of the
sum, fs can be written as
p,+dd,  8,+de,
f.(0,0,) f j Oa,ﬂa)fz(tan'l( ),sin”1( (20) )do,do,
ﬂl dﬂ (eq. 3.21)
The expected value of the representative vector of the sum is found to

be
upper bound 6. _upper bound

E(6,.0) = jGSﬂSfS(OS,DS)dﬂsdﬂs (eq. 3.22]
lower bound 0 lower bound DS
Once the density of the sum (equation 3.21) has been found, the

limits of the integrals in equation 3.22 can be determined. In
general, these upper and lower limits are functions of 0,0 rather
than constants. Thus, while this integral is conceptually satisfying,
it is quite difficult to evaluate in closed form.
D. COMPUTABILITY OF INTEGRALS

In so far as these integrals are derived from real numbers and
represent probability distributions derived from physically realizable
situations, the computability of the integrals is guaranteed. However,
the closed form analytic solutions of the integrals may be far too
complicated to work with in studies of real applications.
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A practical way around this difficulty, using computerized
analysis, can be derived as follows: Visualize the operation of the
procedure described for forming the sum of two pixels. Two prob-
ability distributions have been mapped in the 9,0 plane which represent
two pixels to be operated upon (in the case above, by addition). To
form the probability density of the result, begin by partitioning each
pixel into small regions each represented as a discrete probabilistic
vector with an associated finite probability; perform the operation on
the two recently formed discrete probabilistic vectors; map the
resulting probabilistic vector onto the 8,0 plane and assign a
point probability mass at that spot equal to the product9 of the
probabilities associated with the two discrete probabilistic vectors;
repeat this process using all possible pairs of discrete probabilistic
vectors; now partition the portion of the 6,0 plane covered by the
point masses into regions of a size comparable with that of the
partitions of the original two pixels, and assign to each region the
sum of the point probability masses lying within that region. This
effectively constructs a discrete probability distribution of approx-
imately the same angular resolution as the distributions of the
original two pixels.

It is important to realize that the process described here
preserves the information content of the directional sensor's output
since the pixels reported by the sensor have spatially uniform prob-
ability distributions specified by a single number (the normalized
contrast). Thus this technique is preferable to the strictly
9. Assuming that the probability distributions are independent.
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{ analytical approach for the study of actual ReAtMent system performance.

;ﬁ However, the derivation and subsequent use of the analytic

. expressions for the sum, difference, cross product, dot product, and
angle between two pixels is essential to develop a firm theoretical

iii grasp of the actual operations being performed and their consequences

\

in specific applications.
E. CALCULATING THE DIRECTION OF THE DIFFERENCE BETWEEN TWO PIXELS
The concept of the sum of two pixels or sets of directions

resulting in some form of "average" direction is reasonably easy to

v v—-vi-v A R
- . oo T Y

grasp. Not so for the difference. The best way to visualize this is

to look back at figure 3.1 and see that vD is the difference vector

o

between V1 and V2. This VD is in a direction perpendicular to the

direction of the sum of v1 and V2 and lies in the same plane as those

10

two vectors. Thus the difference vector can be thought of as the

tangent to the unit vector representing the sum of the two vectors.

This establishes the basis for considering the difference between two
probabilistic vectors to be thought of a direction (and hence a

probabilistic vector) rather than a vector difference in the ordinary

.
s
Eﬁi sense.
éé; Thus the "difference of two pixels" means the direction of the
iﬁ difference. A vector difference is computed by taking the negative
: (i.e. opposite sense) of the vector to be subtracted and adding it to
E; the other vector.
;i . To take the negative of a pixel mapped in the 0,9 p ane, let
. 10. More.specifically, each member of VD lies a plane defined by the
'y specific members of V, and V, which“generated that member of V.
[
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fn(o,ﬂ) = fp(-O,-ﬂ) (def. 3.12)
where fp is the density of the original pixel and fn is the density
of the negative of that pixel.

Thus to find the difference between two pixels P1 and P2,
form the negative of P2 as N2 (i.e. N2=-P2) as above where

!!! fy (0,0) = f, (-659) (def. 3.13)

- 2 2

- then express the difference between P, and P, as the sum of P
%!. and N2 and compute as given above for the sum of two pixels.

;o F. CALCULATING THE DIRECTION OF THE CROSSPRODUCT OF TWO PIXELS

The concept of the crossproduct of two pixels is not intuitively
obvious. Referring to figure 3.1, the crossproduct of the two
vectors V1 and v2 is perpendicular to the plane of the two vectors

(i.e., into the page for v1 X Vz). Thus, the direction of the cross-

product of two pixels can be thought of as perpendicular to their
plane.

The crossproduct, Pc, of a member of the first pixel, P1 with

a member of the second pixel, PZ’ is defined as

A
A RO
- P =P, XP, =P, P, P
= c 1 2 1x 1y 1z
- Po Po Py
o APt A A

. = (P, P, -P, P, )i+ (P, P, -P, P, )i+ (P, P, -P, P, )k
F{_ ly Zz 1Z 2y 1Z 2x 1x 2z lz Zy 1y 2x
- A . A A
e = MCOS(OC)COS(ﬂC)l + m51n(0c)cos(0c)3 + ms1n(ﬂc)k (eq. 3.23)
r. where m is a constant of proportionality and the direction of the

_ crossproduct has parameters Oc and Dc.

Given specific members of the probabilistic vectors Pc and

;. Pl’ there is a set of the members of P2 which will combine with
[
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the specified member of P1 to form the specified member of Pc.
Thus the probability added to the probability already assigned to that

particular member of Pc should be the product11

of the probabil-
ities assigned to the specific member of P1 and the set of those
members of P2 which combine with the specific member of P1 to form
that particular member of Pc. This process forms the probability
distribution of P

To derive this probability , first start by setting the dot
product of PC and P1 to zero.12 Thus,

0 = cos(Ql)cos(ﬂl)cos(oc)cos(ﬂc) + sin(Ol)cos(ﬂl)sin(Qc)cos(ﬂc)
+ sin(ﬂl)sin(ﬂc) (eq. 3.24)

Solving for ﬂl as a function of 91 obtain

cosZ(Dl) = 1/((c052(01)cos2(ﬂ ) + s1n2(9 )s1n2(9 )

+ 2cos(01)51n(01)cos(0 )51n(9 )(cot (ﬂ ) + 1. )-(:) (eq. 3.25)

Note that this equation has two branches. When plotted or the 6,0
plane, the probability of GC,DC will be the product of the line prob-
ability (from equation 3.25) over each pixel. Thus
fp. =FP1(°1’im )de, ﬁpz(oz,ﬂ/cos'l( @) ) e
P1 P2 (eq. 3.26)
and the expected value ,EP , of the crossproduct is given by
upper bound of ﬂc pper bound of Qc
EPC(OC,ﬂc) = Ocﬂcfpc(gc,ﬂc)docdﬂc (eq. 3.27)
Tower bound of f. 7 lTower bound of 6.
where the limits on the integral are the bounds of Oc,ﬂc . As
was the case with the sum of two pixels, it is much more efficient to
restrict the limits of the integral to the minimum bounds which will

11. Again, assuming independence of the distributions of P1 and PZ'
12. Since P is by definition perpendicular to P1 and P2
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enclose the region of the 8,0 plane where fPC(OC,ﬂc) is different
from zero, than to find the limits as a function of @,8. Again,
this integal is intelectually quite satisfying, but unfortunately
guite difficult to evaluate in closed form.
G.CALCULATING THE ANGLE BETWEEN TWO PIXELS

This is relatively straightfoward as the angle between two
vectors is a scalar rather than a vector quantity. Thus if we define
the two pixels P1 and P2 as above, the dot product of these two
pixels is a scalar random variab]e,}'= cos(<«¢), where oL is the angle
between the two pixels. Consider a given value ofo{ and a particular
member of one pixel (01,01). The locus of all members of the other
pixel (92,02) which have an angular difference of @(lie on iLre inter-
section of a cone of half angle centered at 01,01 with the other
pixel. Thus

J’= cos(ol)cos(01)cos(02)cos(02) + sin(Ol)cos(Dl)sin(oz)cos(ﬂz)
+ sin(ﬂl)sin(ﬂz) (eq. 3.28)

Then

J’-sin(ﬂl)sin(nz) = cos(9;)cos(8,) + sin(0;)sin(8,) = cos(6;- 9,)
cos(ﬂl)cos(ﬂz)
(eq. 3.29)
and therefore
1lcos(¢<) - sin(ﬂl)sin(ﬂz)\

=0, = cos™ ) (eq. 3.30)

cos(ﬂl)cos(ﬂz)
thus
fe (o) = }/fl(ol,ﬂl)/fz(,02)d02d01d01 (eq 3.31)
Py P2

The expected value is therefore
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upper bound of o
m E(«) =[f<(a()d°< (eq 3.32)
ii lower bound of <

pé As was the case with the other integrals derived above, this is also

very satisfying, but difficult to evaluate in closed form.

H. ANALYSIS OF THE TWO VECTOR METHOD IN TERMS OF CONTINUOUS
PROBABILISTIC VECTORS

The purpose of the above derivations of the sum, difference,
crossproduct, and angle between two pixels (i.e., sets of directions)
is to develop the tools necessary to analyze the Two Vector Method in
probabilistic terms. The Two Vector Method is the mathematical basis
for ReAtMent and has been derived13 for the simple case of discrete
vectors. The derivation for the probabilistic case very closely
parallels this.

. . ANA A . .

Using the same notation, consider that L,M,P,and Q are given in
the form of probabilistic vectors. The PAR is calculated by equation
2.7 using the technique described for taking the difference and
crossproduct of probabilistic vectors.

e AAA A

Next, the measured probabilistic vectors, L,M,P, and Q, are
decomposed into components parallel and perpendicular to the PAR.
Since only the perpendicular components are of interest, the most

straightforward method of calculating them is to use a double cross-

product as inaicated in equation 3.33 .

V= (PAR X V) X PAR . (eq. 3.33)
ANA A .
[ where V can represent any of the vectors "L,M,P, or Q. The major

reason for using this procedure rather than the one suggested by

L

Fj 13. See derivation in section F of chapter 1I.
3 3
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equations 2.9, 2.10, and 2.11 is that the scalar s in equation 2.9

becomes a random variable with a conditional probability distribution.

- A
! P .

This can provide major unnecessary complications in attempting to
compute the. proper. probability distribution for the respective perpen-

dicular components. In contrast, the proper probability densities are

’_“'T"";,
g Aot .

computed directly via equation 3.33.
Using equation 3.31 the probability density of the AR can be

computed. However; it must be noted that this is a conditional prob-

"‘j' o

ability distribution which depends on the member of the PAR selected.
Thus at this point, it is more reasonable to define the probabilistic
matrix directly as having the parameters of PAR and AR and a prob-
ability density of fPAR,AR' The elements of the matrix are as
defined by equation 2.14 and the probability density is defined by
foar,aR = Tpar(PAR) (fu(a¢) + f0(B))/2 (eq. 3.34)

where fPAR is the density of the PAR member selected, f_, (e¢) and

ﬂ, ( #) are the probability densities of &, and V4 respectively as

calculated using equation 3.31 where & is the angle between the

components perpendicular to the PAR of one physical vector (e.g. the
ii angle between the perpendicular components of’E and 15 and # is the
E; corresponding angle between the components perpendicular to the PAR of
T? the other physical vector.
éj The process described above for calculating the probabilistic
é; attitude matrix, which results from the use of probabilistic vectors in
rf the Two Vector Method, is a straightforward extension of the analysis of
Eﬁi the Two Vector Method using the tools developed in this chapter.
E‘ While the analysis as given is correct and theoretically quite
?- 36
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satisfying, the notations one is forced to use to express the analysis
in terms of continuous functions tend to obscure the overall chain of
thought. Furthermore, the integrals which must be evaluated during
the course of the analysis are at best quite difficult (although
guaranteed possible by their physical realizability) to express in
closed form. This complicates the analysis of even the most simple
case to the point where it is impractical to perform.

Fortunately, in the real life applications of the analysis given
above, the physical vectors are measured with sensors whose outputs are
reported in terms of discrete probabilistic vectors (i.e. collections
of pixels with discrete assigned probabilities)., This leads to a
computerized approach to the analysis which is based on the above but
is considerably less complicated.

I. ANALYSIS OF THE TWO VECTOR METHOD IN TERMS OF
DISCRETE PROBABILISTIC VECTORS.

In chapter II the concept of expressing the output of a directional
sensor in terms of discrete probabilistic vectors was introduced.
This allows replacement of the continuous distributions described
above by finite sets of vectors represented by point probability
masses on the 0,0 plane.

Paralleling the analysis above, the difference vectors between
measurements of the same physical vector are formed by computing the
normalized (i.e. unit length) vector difference between each possible

pair of members of the two measurements. Using the notation introduced
in the derivation of the Two Vector Method, if L consisted of

{ﬁi’LZ’ and L3}-and M consisted of'{ﬁl,Mz, and Mé} then the vector
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pairs Li'Mj would be formed and normalized where the indices i and
J run from 1 to. 3. The probability assigned to the difference vector
Li‘Mj would be the product of the probability associated with Li
and that associated with Mj based on the independent selection of
one from L and one from M. The same process is performed for the
other difference vector P-Q.

The point probability masses which result from the formation of
these difference vectors can be grouped in partitions of the 0,0
plane with a solid angular subtense similar to that represented by
each original member of the measured vector set (e.q. Ll)' These
partitions of the 0,0 plane can now be represented by discrete
members of the probabilistic vector difference and their assigned
probabilities be the sum of the point probability masses in the
respective regions. This allows a possible reduction in the number
of members of the difference vector from the product of the number of
members in the two vectors being differenced.

The discrete difference vectors having been computed, equation
2.7 can be used to form the PAR. Again, the crossproduct operation is

performed on each possible pair of the members of the two difference

vectors used and the point probability mass assigned to the resulting

crossproduct is the product of the probabilities assigned to the

¢ respective members chosen. The area covered by the crossproduct in
Eii the 0,0 plane .is again partitioned into regions whose solid angular
E_ subtense is similar to that of the original members of the measured

physical vector.

Now the conditional probability distribution of the AR must be
38
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computed. Choosing each member of the PAR in turn, use equation 2.12
to calculate the AR for each possible pair of the members of L and M
and for each possible pair of the members of P and Q (substituting P
for L and Q for M in equation 2.12), assigning to each result the
product of the probabilities of the respective members of the PAR and
measured vectors used to compute it. Partition the range of the values
of the AR into lengths of similar angular subtense as that of the
measured members of the physical vectors.

Note the overall result. Each member of the PAR has a number
of possible values of AR associated with it, and thus each combination
of a member of the PAR and a value of the AR has a probability as-
sociated with the combination. If this combination of PAR and AR is
expressed as a matrix (per equation 2.14) and associated with a
probability, then by definition a member of a probabilistic matrix
results. The set of alil such members is the probabilistic attitude
matrix which represents the output of the ReAtMent system.

While this derivation follows the course laid by the continuous
analysis of the section above, there exists some additional infor-
mation which can be used to increase the accuracy of the probabilistic
attitude matrix. This arises from the examination of the case where
the measured vectors consist of a single member (corresponding to the
derivation of the Two Vector Method in chapter II). By virtue of the
fact that the difference in the two observations of the direction to
the object (i.e. a physical vector) is due to the equivalent of a
physical rotation of the observer by AR about the PAR, the calculation
of the value of the AR must be the same (within the accuracy of the

39




pixel size) for equation 2.12, whichever physical vector is chosen.

Thus when calculating the value of AR, using selected members of
L and M, roughly the same value should be obtained using the selected
members of P and Q in equation 2.12. If this is not the case, then
the computed PAR and AR can not transform the selected members of both
L into M and P into Q. Therefore, the probability assigned to this
combination of PAR and AR should be zero and not that according to the
discussion above.

Furthermore, the PAR used with selected members of the measured
vectors must be roughly perpendicular to the respective difference
vectors. Again, if this is not the case, then the combination of
PAR,AR is not capable of transforming the selected members of both L
into M and P into Q, and should be assigned a probability of zero.

This additional information can lead to significant computational
savings as many combinations of selected members of the measured
vectors will not be valid. That is, that no possibie physical
reorientation of the observer could result in those particular members
of L and M beipg transformed into those particular members of P and
Q. This means that the calculation of the members of the PAR by the
exhaustive technique given in the beginning of this section is not
optimal as it may contain many members with an actual probability of
zero, but a finite assigned probability. Even more significant than
the computation of potentially extraneous members of the PAR, is the
refinement of the computation afforded by the check on the AR. This
means, however, that the integral of the probabilities over the
remaining members of the probabilistic matrix may not be 1.0. Since
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the actual PAR,AR combination is guaranteed to be amoung the remaining

members, the appropriate procedure would be to normalize the prob-

abilities associated with the remaining members to arrive at the

correct distribution.

Thus, the most efficient approach is to select all possible sets
of one member from each measured vector, compute the PAR, check the

two values computed for the AR for consistancy, and assign the product

of the probabilities of each member used to the combination of PAR,AR.
After this, normalize the probabilities assigned to the surviving
combinations of PAR,AR.
J. COMPLETING THE PROBLEM: USING THE COMPUTED PROBABILISTIC MATRIX
Once the probabilistic attitude matrix is availiable, it must be
used to transform an observed probabilistic vector into the other
coordinate system. The procedure is straightforward. Each member of the
probabilistic matrix is used in turn on each member of the observed
probabilistic vector, and the result assigned the product of the
probabilities associated with the respective matrix and vector used.
This results in a probabilistic vector whose density represents the
probability of the direction of the observed object being correctly

expressed by the corresponding member of that vector.

In the case of discrete probabilistic vectors and matrices, the

b SVl Pl

probability of the respective results can be mapped into the 0,0

plane by point masses. The area covered can be partitioned into
E' regions whose solid angular subtense is comparable to that of the
observed vector. This results in a compact (minimum number of members)
bi probabilistic vector which predicts the normalized contrast of the
¥
E,




object as seen in the other coordinate system.
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CHAPTER IV: STATE OF THE ART IN ATTITUDE MEASUREMENT

Eﬁ Before proceeding to the analysis of an actual ReAtMent system,
Eﬁ it is necessary to understand the current state of the art in attitude
;} measurement technology and how it relates to the basic concepts
N introduced in chapter I.

!! A. MECHANICAL ATTITUDE MEASUREMENT

&. This is the earliest form of attitude measurement. It allows
;i a direct measurement of the relative orientation of one object

(usually gimbal mounted) with respect to its reference orientation.
Consider an object mounted on a shaft so that it is free to rotate
about that shaft, or more conveniently, consider that the shaft is

part of the object and that the shaft is free to rotate in a mounting

bracket. The exact orientation of the object can be specified by the
!! angle by which the shaft has rotated from some reference position.
. In this case, the PAR is the axis of the shaft and the AR is the
angle of the shaft rotation. The attitude matrix [A] which transforms
any directional measurement made by the object in its current orien-
tation to the equivalent expression in its reference orientation with
respect to its mounting frame can be found by equation 2.14.

This gives only one degree of i{reedom to the orientation of the

object. To give the object one more degree of freedom, attach a shaft

RN WA |

to the first mounting bracket so that is perpendicular to the shaft

attached to the object, and then mount this "second object" (the object

with its mounting frame) in a second mounting bracket similar to the

first (but obviously larger). The same equation, 2.14, can be used to

B sl e n oD s e o areer

yield another attitude matrix which transforms any directional
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measurement made in the current orientation of the "second object"

into the equivalent expression in its reference orientation with
respect to its mounting frame.

Now attach a shaft to this "third object" (the mounting bracket
holding the mounting bracket which holds the object) and mount this in
a similar mounting frame. The same equation, 2.14, can be used to
generate an attitude matrix [A3] which transforms any directional
measurement made by the third object in its current orientation into
the equivalent expression in its reference orientalion with respect to
its mounting frame.

The original object is now free to assume any orientation with
respect to the mounting frame holding the third object. When the
original object makes a directional measurement, the information is
first transformed into the coordinate system of the second object by
[Al]’ then into the coordinate system of the third object by [Az],
and finally into the coordinate system of the mounting bracket
holding the third object by [A3]. This last mentioned coordinate
system is usually the one shared by the platform carrying the original
object, and consequently the coordinate system the information is
desired in.

The three successive transformations can be mathematically
combined into a single attitude matrix [A] by
[A] = [A310A,10A,] (eq. 4.1)

If the shafts are mutually perpendicular and their center lines
intersect at a common point (such mounting gimbals are usually designed

this way) which is the origin of the coordinate system of the original
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object, then these shafts define the axis of a convenient coordinate

,-,..V

system when the original object is in its reference position (i.e.
aligned to share this coordinate system). In this convenient, often
used special case, each of the attitude matrices, [Al],[Az], and
[A3] become simple matrices which are functions of one parameter
each commonly referred to as the Euler angles. A great deal of
information is contained in the literature concerning Euler angles,
principally in texts on mechanics. There are currently several
variations of the Euler angles in common use. They differ by the order
of rotation about the axes (one does X first, the other Y, etc.) and
the sense of the positive rotation (i.e. one says counterclockwise,
the other clockwise). These are all special cases of equation 4.1.
In general, however, equation 4.1 can be used even if the respective
axes are not perpendicular as is occasionally necessary in certain
applications.

This technique of mounting the original object in a series of
gimbals, measuring the shaft rotation angles mechanically, and then
using equation 4.1 to generate the attitude matrix, is called mechan-
ical attitude measurement. This technique forms a critical part of

most ReAtMent systems as the directional sensors typically used have

small fields of view and must be gimbal mounted in order to be pointed
roughly in the direction of the physical vector to be measured.

Consequently, mechanical attitude measurement is often an integral

v
—

{ part of a directional measurement system.

kf' The most common form of shaft angle measurement device is a
{‘ simple pointer attached to the shaft with the angle read out manually
;

.
.
¢
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via a dial. This is usually accurate to about 1 mil (1/6400 of a
full circle). The more accurate mechanisms make use of various gearing
arrangements to make a pointer rotate through a larger angle than the
shaft, thus allowing smaller rotations to be measured (e.g., a theod-
olite is usually good to about 0.001 mill and uses venere scales).
Electrical readout devices range from simple rotary switches (good to
roughly 5 degrees) to sophisticated optical encoders (10 to 12 bit
parallel output direct reading) or incremental encoders (good to about
0.01 mill and require counting from a reference). These devices are
undergoing continual improvement and the reader is urged to contact
reputable vendors directly to obtain current information.

The direct extension of mechanical attitude measurement to
ReAtMent is not possible since mechanical attitude measurement relies
on the original object rotating successively about known axes,.
Objects in free space (i.e. not gimbal mounted) generally do not have
this characteristic movement, thus mechanical attitude measurement can
be used as a critical subsystem for a directional measurement device,
but is not capable of forming a ReAtMent system by itself.

B. INERTIAL ATTITUDE MEASUREMENT

This is an attempt to extend mechanical technology to ReAtMent
by gimbal mounting a "gizmo", which is supposed to remain aligned with
some inertial coordinate system, as the platform whose attitude is to
be measured moves. The relative orientation of this gimbal mounted
"gizmo" can then be measured by mechanical means.

If this "gizmo" does, indeed, remain aligned with some inertial
system then the attitude of each of two separated platforms can
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be measured relative to this standard inertial coordinate system and
the relative orientation of the two platforms determined (i.e. a
ReAtMent performed).

The problem is that no such "gizmo" exists which will remain
perfectly aligned with an inertial coordinate system. A very good
approximation to remaining aligned with a vector in an inertial
coordinate system is possible using the spin axis of a gyroscope. As a
minimum of two physical vectors are necessary to provide enough infor-
mation to perform an attitude measurement, at least two gimbal mounted
gyroscopes are necessary in an inertial attitude measurement system.
These two gyroscopes are usually mounted with their axes perpendicular
to maximize the sensitivity of the measurement, however, numerous
schemes have been tried over the years and reported in the literature.

The problem with gyroscopes is drift. Over a period of time, the
axis of the gyroscope will start to precess (i.e. nutate or wobble)
due to the effects of acceleration not parallel to the spin axis and
slight imbalances in the mass of the gyro. This is inherent in the
mechanical design of the gyroscope and can not be designed out.
However, design efforts have succeeded in minimizing these effects
using laser machining and air bearings. Typical gyroscopes in common
use today have drift rates of between 0.1 to 1 milliradian per hour.

Another device used is the laser gyro. The basic operating
principle is that the velocity of energy propagation (i.e. electro-
magnetic waves) is effectively independent of the velocity of the
medium it is propagating in (at least for non-relativistic velocities).
Thus, when two coherent laser beams are propagated along different
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paths and both illuminate the same detector, the phase difference due

to the different path lengths will result in an interference pattern

on the detector. [If the device is stationary, the intensity of the

light seen by the detector will be constant. When the device moves,

the rotation about the axis perpendicular to the path will move the

detector closer to one of the incoming beam phase fronts and further

from the other. The phase change, due to one beam traveling a longer

inertial distance than the other, results in the equivalent of inter-

ference fringes being seen at the detector. By counting these fringes

the amount, and hence the rate of rotation, can be measured. Using

three laser gyros the “"equivalent" of the Euler angles can be measured.
Again, the problem is drift of the electrical and mechanical parameters
of the laser gyro.

In some systems, small changes or torques are measured and
integrated to give the current orientation of the object. One example
of this is the fluidic rate sensor used on some aircraft. This
instrument senses the inertial deflection of a jet of air to sense the
rotation about the axes perpendicular to the axis of the air jet.14
The jet of air cools thermal sensors and the deflection of the air
jet is sensed by the change in temperature between sensors on opposite
sides of the stream. The present application is primarily for the
autopilot rather than for attitude measurement. If used for an
inertial attitude measurement, two jets would be required as each
measures the equivalent of only two of the Euler angles.

14. Garner,D. "The Electro-fluidic Autopilot", Sport Aviation,
August 1980,Volume 29, No. 8, pg. 16-24
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In essence, inertial attitude measurement is sufficiently ac-
curate for many applications, but it suffers from drift and the need
to be periodically updated. Again, the devices are being constantly
improved and the reader is urged to contact reputable vendors directly
to obtain current information.

The "gizmo" that is actually needed is a physical vector measure-
ment device. Ideally, the axis of a spinning gyroscope represents a
physical vector in inertial space. Thus it can readily be seen from
the discussion in the chapter II that the inertial attitude measure-
ment systems require at least two gyros. The mathematics evolved over
the years to obtain the attitude of the system from the measurements
of the gyroscope angles (or equivalently the integrals of their rates
of change) are thus not inconsistant with the Two Vector Method. The
advantage to be gained from applying the Two Vector Method directly is
elimination of many of the approximations resorted to in the more
conventional algorithms applied to inertial systems.

However, inertial attitude measurement systems are not true
ReAtMent systems as such because they only determine the relative
orientation of a single object to a "reference inertial" coordinate
system, and not the relative orientation of two separated objects
directly.

C. GRAVITIMETRIC ATTITUDE MEASUREMENT

The basis for this type of attitude measurement is a measurement
of a single physical vector, the local gradient of the potential
energy field. Given quiescent conditions (i.e. no net acceleration),

and limiting the discussion to a small region near the surface of the
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earth, the gravitimetric field is essentially uniform. Thus the

surfaces of equipotential are effectively flat (i.e. level). This

means that the gradient points downward and the direction "down"

defines a physical vector. However, since only one physical vector is

measured, gravitimetric attitude measurement is only a partial attitude
measurement technigue.

The most common example of this type of attitude measurement
is performed via a spirit level. For example, when a surveyor's
transit is set up, it is first leveled by adjusting the legs of the
tripod until a bubble is in the center of the bubble level. This
establishes the azumthal plane of the transit as being horizontal, and
thus the elevation plane as being vertical. However, when two such
transits are set up, their coordinate systems will not be identical.
A difference in azimuith will exist. The various procedures for
computing this azimuth difference (and hence correction factor) amount
to the measurement of another physical vector. Gravitimetric attitude
measurement has thus performed only a partial attitude measurement.

The major problem with gravitimetric attitude measurement is that
it can only be used accurately where the gravitimetric field is
uniform and under static conditions. Therefore, gravitimetric atti-
tude measurement is unsuitable for applications aboard a ship,
plane or spacecraft. Since it only deals with the orientation of the
object with respect to a reference rather than ancther system, it is
not a true ReAtMent technique.

D. ELECTROSTATIC ATTITUDE MEASUREMENT
This is a partial attitude measurement technique used in much
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the same fashion as gravitimetric attitude measurement. The physical
vector measured is the electric field near the surface of the earth.
This electric field has a very nearly vertical gradient. The standard
sensor consists of a source of radioactive ions and collection elect-
rodes. The stream of ions drift along the electric field lines
and are collected on electrodes. The charge induced on the respective
electrodes indicates the direction of the ion stream and therefore the
direction of the electric field.

The principal use of this device is as a very low cost, light
weight, vertical reference of the autopilot used on remotely piloted
vehicles. Obviously, any nearby object (power lines, metal structures,
etc.) can disrupt the electric field, thus the device has very
limited use.

E. MAGNETIC ATTITUDE MEASUREMENT

This is another partial attitude measurement technique in common
use. The physical vector measured is the gradient of the earth's
magnetic field. Usually, only the horizontal component of the field
is measured. This is the direction of "magnetic north" usually
measured by a compass. Over a limited area and away from metallic
objects, this direction qualifies as a physical vector.

Magnetic and gravitimetric partial attitude measurement tech-
niques are usually combined to provide a total attitude measurement
capability. In applications where the primary purpose of the attitude
measurement system is to. align the device with the "reference" co-
ordinate system on the surface of the earth under static conditions,
this combination works very well. The surveyor's transit is an
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excellent example. The bubble level measures the physical vector
“"down" and the compass measures the physical vector "the horizontal
component of the magnetic field gradient". When two such transits,
each measuring the same two physical vectors, are set up so that
the respective vectors appear to have the expected respective de-
scriptions, then the two transits can be said to be aligned with the
“reference" coordinate system and thus aligned with each other.

It should be noted that the use of the horizontal component
of the gradient of the magnetic field is sufficent, if the transit
is first leveled. If, however, the two transits are set up in some
arbitrary fashion, then all three components of the gradient of
the magnetic field must be measured. This can be done via a vector
magnetometer. Thus, mangetic and gravitimetric attitude measurement
techniques can be combined under appropriate conditions to yield a
true ReAtMent system, where the relative orientation of two objects
(e.g., the transits in the example above) can be determined.
F. PHOTOGRAMMETRIC ATTITUDE MEASUREMENT

This technique accomplishes ReAtMent in a very cumbersome way
by applying the rules of perspective geometry to objects of known size
and distance in the field-of-view of the sensor. Remote attitude
measurement is possible in the sense that the relative orientation of
the viewed object and the sensor can be determined. More often,
however, the orientation of the viewing device is computed relative to
salient features of the scene, such as the horizon or the edge of the
moon. This technique arose mainly from photo reconnissance appli-
cations where it is necessary to establish the orientation of the
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viewing system so that observed objects can be located. Variations
on this idea which have sensors look at the edge of the moon and
the horizon of the earth have been used for space applications. The
use of lines-of-sight to various objects in the scene for the compu-
tations involved is the fundamental reason why this technique works.
The results of the dissertation research are likely to find direct
application here. By selecting two lines of sight to features in the
scene sufficiently distant from the sensor (this qualifies them as
physical vectors) and measuring their apparent directions by the
position of these features on the image of the scene, it is possible
to use the Two Vector Method to compute the attitude of the viewing
device directly (assuming that the locations of the scene features and
the sensor are known in some reference coordinate system). This can
result in a considerable savings in both time and computational effort
over present techniques.
G. ELECTROMAGNETIC ATTITUDE MEASUREMENT

Remote attitude measurement is accomplished by direction sensing
techniques developed for radio frequencies (e.g., time of arrival,
interferometric phase measurements between receiving antennas, and
directional antenna rotation). This technique is not in common use due
to the relatively poor directional accuracy possible (primarily due to
diffraction and multipath effects at the long wavelengths used). As
the frequency is increased into the millimeter wave region, ReAtMent
systems become feasible. However, due to the relative infancy of this
technology, and the existance of practical ReAtMent systems using
electrooptical techniques, it appears unlikely that this technique
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will be used except for very special applications.
H. SONAR ATTITUDE MEASUREMENT

Given the present state-of-the-art in accoustic technology, it
appears feasible to constuct a ReAtMent system using sound waves
instead of electromagnetic waves. Surface accoustic waves with
submillimeter wavelengths have been demonstrated. The ability to form
images using sound waves (e.g., some of the latest infrasound medical
body scanners) gives rise to the possibility of using the same tech-
niques as those in electromagnetic, photogrammetric, or electrooptical
attitude measurement.
I. ELECTROOPTICAL ATTITUDE MEASUREMENT

The basis of electrooptical attitude measurement is the measure-
ment of the direction of the line-of-sight to a distant object which
serves as a physical vector. The use of two such measurements allows
the Two Vector Method to be used directly.

The major difference between electrooptical attitude measurement

.and photogrammetic attitude measurement is that in the latter, the

lines of sight used are selected from an image while electrooptical
attitude measurement systems need not necessarily form an image. For
example, imagine a sensor viewing two pulsing lights in the distance.
A photogrammetric approach would select the pixels representing those
lights on the basis of their temporal variation as being the desired
salient features of the scene and report their directions accordingly.
An electrooptical approach would detect and measure the directions of
the two lights by pointing a device (e.g., a quadrant detector)

directly at the flashing light without necessarily ever forming an
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image of the scene.

In addition to the obvious physical vector of the line-of-sight
between two objects, it is possible to use the direction of polar-
ization of a beam of light emitted by the viewed object as one of the
physical vectors. It is possible to construct a ReAtMent system using
a single cooperative viewed object (possibly the other station ) which
emits a polarized beam of light toward the viewer. This approach was
used for the PAM 15.

Overall, electrooptical attitude measurement appears to be
the best for ReAtMent applications because the physical vectors
used are not affected by motion of the platform, and very high direc-

tional accuracy is obtainable due to the short wavelengths used.

J. SUMMARY OF THE MAJOR FORMS OF ATTITUDE MEASUREMENT

The fundamental form of attitude measurement is mechanical
because the relative orientation of the sensor to the platform
(whose attitude is being measured) is most often measured by this
technique.

The techniques which rely on the measurement of a single physical
vector are classified as partial attitude measurement techniques
because they are incapable of making a true attitude measurement by
themselves as at least two physical vectors must be measured. Two
such techniques, (e.g. gravitimetric and magnetic) must be combined to
yield a true attitude measurement. Often, as in the example cited
15. The Position and Attitude Monitor (PAM): an electrooptical state-of-
the-art ReAtMent system .
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above of the surveyor's theodolites, the function of the ReAtMent system
is merely to indicate when the patform is aligned in some preferred
orientation, rather than to actually measure the relative orientation
between the coordinate sytems of two objects.

Inertial attitude measurement tries hard but doesn't quite measure
up to the definition of ReAtMent, mainly because it employs an inter-
mediate "inertial reference" frame which may or may not be common to
the two stations whose relative attitude is being measured. As a quick
example of this, consider a platform on the earth and one on the moon
at the time of their initialization. Let both platforms be launched
into earth orbit and approach each other. Because of the relative
motion of the earth and the moon, the inertial reference frame
of the earth platform and the moon platform would be different.
Therefore, inertial reference systems carried by the platforms would
not be able to determine the relative orientation of one platform to
the other.

Electromagnetic, electrooptical, sonar, and photogrammetric attitude
measurement essentially are similar as each uses the direction of a
"line-of-sight" as the physical vectors measured. The differences stem
mainly from the wavelength of the energy used and the operational
environments for which they are best suited. At present, there are no
known programs involving sonar for attitude measurement, however, it
would appear that this technology would be a reasonable choice for
deep sea underwater applications.

Based on the resolution available and the demonstrated real time
capability, electrooptical attitude measurement is the best choice for
systems designed to operate in the earth's atmosphere or space.
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TABLE 4.1 State of the Art Accuracy and Limiting Factors of Attitude
Measurement Techniques

Technology

Mechanical

Inertial

Gravitimetric

Electrostatic

Magnetic

Photogrammetric

Electromagnetic

Sonar

Electrooptical

K. CONSIDERATIONS FOR ReAtMent APPLICATIONS

Type

Direct

Indirect

Partial

Partial

pPartial

Remote

Remote

Remote

Remote

Limiting
Factor

Resolution
and Speed

Drift

Acceleration

Local field
Perturbations

Local field
Perturbations

Optical
Resolution

Directional
Resolution

Directional
Resolution

Optical
Resolution

State of the Art Accuracy

0.001 microradians

8 milliradians with

1 milliradian/hour drift
0.001 microradians

10 microradians

10 microradians

1 microradian

0.5 milliradians

10 microradians
(estimated from imaging
system resolution)

0 .1 milliradian (PAM,1978)
< 1 microradian achievable

The need for ReAtMent arises when data from two separated systems

must be combined to solve a three dimensional geometry problem.

The amount of separation can be great, as in the case of an aircraft

and a ground station, or small, as in the case of two systems mounted

on the same platform.

The choice of what physical vectors to measure is dependent

on the accuracy required and the operational environment of the

e - e
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ReAtMent system. In the case where the two systems are merely to be
aligned with each other and are relatively close to the surface of
the earth under static conditions, the choices of the physical vectors
"down" and "north" are reasonatle. These can be easily measured by
the combination of gravitimetric and magnetic techniques.

If one system must (for operational reasons) be completely
self-contained, then inertial technology (although it is not a ReAtMent
system in the strict sense) is the obvious choice. If possible, a
ReAtMent system should be used to initially align and periodically
update the inertial systems. However, drift problems pose an inherent
limitation to the accuracy obtainable.

Under conditions where it is possible to measure the line of
sight to two different distant objects or the stations are inter-
visible, electrooptical technology with the Two Vector Method is
indicated.

The practical applications of ReAtMent call for something to be
pointed as a result of the attitude measurement. In such pointing
applications, mechanical attitude measurement is the obvious choice.
The output of the ReAtMent system must be considered along with the
device being pointed as a single system. The nature of the composite
system is to close the tracking loop via the observational devi.e -
ReAtMent system - pointed device rather than by having the pointed
device acquire and track the object itself. Thus, as in chapter II, the
analysis of the ReAtMent system must be carried to the point where the
probability of the object being in the FOV of the pointed device is
calculated.
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CHAPTER V: THE GENERALIZED ReAtMent SYSTEM
A. OVERVIEW

In order to analyze the generalized ReAtMent system, it is
necessary to specify each of the major components in sufficient detail
to fully characterize the function performed by that component. This
form of functional description allows whatever specific hardware
implementation selected for each given component to have its para-
meters substituted directly into the generalized analysis developed
below.

We begin this analysis by considering the generalized ReAtMent
problem as described in chapter I. An observation device on one
platform detects an object and wishes to have another device on the
other platform pointed so as to view the object.

The first step is to measure the relative position of one of
the platforms in the other's local coordinate system. The next step
is to measure the direction and range (or equivalently the relative
position) of the object. The next step is to measure the relative
attitude between the two platforms expressed in the form of a matrix.
The last step is to use the computed attitude matrix to transform the
direction of the object (computed from the three dimensional triangle)
into the coordinate system of the device to be pointed.

There are several factors which combine to determine the mix of
technologies selected to implement a solution to the ReAtMent problem
in any given situation: 1. The specific geometrical problem to be
solved (i.e. a single three dimensional triangle or a more complicated
figure composed of several three dimensional triangles); 2. The precision
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necessary to solve the figure (i.e. provide closure of the endpoints
of the various sides of the triangles to within the volume of the
object defining those endpoints) and thus perform the mission in
a practical sense; 3. The environment in which the systems must
perform (i.e. in space, airborne, underwater, on the ground, or any
combination of these); 4. The size, configuration, and weight restric-

tions imposed by the platforms and or overall mission; and 5. The

physical vectors which can be measured subject to the above constraints.

B. BLOCK DIAGRAM AND COMPONENT DESCRIPTIONS
OF THE GENERALIZED ReAtMent SYSTEM

The block diagram of the generalized ReAtMent system is shown

below in figure 5.1.

PLATFORM 1 PLATFORM 2

Position *
Measurement Means
Physical Vector #l1
Measurement Means
Physical Vector #2
rement Means s
Computational Means

hysical Vector #1
Measurement Means

Measurement Means ,:
Computational Means

Device to be pointedf Object Direction
asurement Means
Communications Means ommunications Means]

* indicates item may not be present on both systems or may reside at
a separate location and be tied in via the communication means

Figure 5.1 Generalized ReAtMent System Block Diagram

In order to keep this analysis as general as possible and yet
provide a reasonable guide to essential subsystem characteristics,
each of the subsystems shown in figure 5.1 above will be discussed in
functional detail.
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1. DEVICE TO BE POINTED

The device to be pointed is selected by the application. Based
on the expected range to the object and the expected size of the
object, the device will usually be designed with a beamwidth covering
roughly twice the size of the object at the minimum expected range.
This will insure that if the line defining the center of the beam is
on the object, that the object will be correctly covered by the beam.
Thus, the ReAtMent system must be able to define the direction to the
object to within better than one half of the beamwidth (or FOV) of the
object to be pointed.

In general, the device to be pointed will not be able to acquire
and track the object at which it is to be pointed. If this were the
case then the ReAtMent system would become superfluous. The object is
detected and tracked by one platform and commands are relayed to the
other platform carrying the device to be pointed.

In the generic sense, the apparatus used to point the device
itself must be considered as a part of the device. This apparatus is
given a command to point in a specified direction in its own local
coordinate system. Therefore, the output of the ReAtMent system must
be in the form of this command.

2. POSITION MEASUREMENT MEANS

The purpose of this component is to determine the relative
position of one platform to the other in the local coordinate system
of one of the platforms. This can take many forms. If the two
platforms are intervisible and a device onboard one is able to
determine the range and direction to the other platform, then this
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;; device serves as the position measurement means. If the two platforms
-are not intervisible, then it is necessary to use some intermediate
coordinate system to locate the position of each platform. This
rf. introduces a complication, as now t-e attitude of at least one of
ii the platforms must be known relative to the intermediate coordinate
system. As an example of this, consider two aircraft on opposite sides

of a mountain range and let the first aircraft be flying level on a

knewn heading. At a given instant of time, the locations of both
aircraft are measured in terms of latitude, longitude, and height
above sea level. It is possible to solve for the length and direction

of the line between the two aircraft in terms of the ground coordinate

system. Since one aircraft is flying level, the slope of the line in
ground coordinates and aircraft coordinates is the same. Since the
!!' aircraft is flying.on a known azimuth, this can be appropriately added
." to the azimuth of the line between the aircraft expressed in ground

coordinates, to give the azimuth of the line in aircraft coordinates.

il ‘The length of the line between the aircraft is independent of the
.coordinate system used. Thus the relative position of the second

.atrcraft has been determined in the coordinate system of the first

aircraft.
E‘ To continue the example just a bit further, consider that the
i: level aircraft has used onboard radar to locate the relative position
i; of an unknown aircraft. The simple triangle in three dimensions
f“ between the two aircraft and the unknown aircraft can be solved for
the length and direction of the line from the second aircraft to the
unknown aircraft. Thinking back to the discussion on partitioning
& 62
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objects into volume elements so that the fundamental assumption
applies in order to express the problem in terms of physical geometry,
the three dimensional triangle formed by the three aircraft represents
an ensemble of triangles. This requires that the endpoints of each
line be located within the volume of the respective aircraft, and
establishes a fundamental requirement for the accuracy of the means
used to locate each of the three aircraft. If the radar were only
able to locate the unknown aircraft to within a volume of space equal

3

to 1 km”, then as far as the physical geometry problem is concerned

3

that unknown aircraft has a volume of 1 km~, and the best possible

ReAtMent system would only be able to point the device (e.g., a narrow

3 volume.

beamwidth communications 1ink) to somewhere within that 1 km
Leaving the example, it can be seen that the position measurement
means shown in figure 5.1 can be either on the respective platforms
or at some separate location. The accuracy of these postion measure-
ment means determines the overall accuracy of the triangle in three
dimensions which is solved, and hence the ability to perform the overa
mission. For this reason, the position measurement means are usually
specified without regard to the ReAtMent system used to determine the
relative attitude between the two platforms.
3. PHYSICAL VECTOR MEASUREMENT MEANS
The key to specifying the physical vector measurement means is

in first very carefully selecting the physical vectors to be measured

and insuring that the parameters selected to be measured actually

1

represent physical vectors. This must be done with an appreciation for
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the operating environmant in which the ReAtMent system must function.
The physical vectors selected must be measurable from both platforms
throughout their allowed range of attitudes and motions. Thus, while
the physical vectors representing the gradient of the gravitimetric
and magnetic fields may be reasonakle choices for a fixed ground based
application, they woeuld not necessarily be good choices for shipboard
use. Similarily, the use of the directions to two convenient stars
may be excellent choices for a spaceborne application, they may not be
good choices for a ground based system which must operate during the
day.

The other consideration is how accurately the selected physical
vectors must be measured. For problems involving relatively short
ranges (e.g., an anti-aircraft weapon and its associated radar), the
physical geometry problem may indicate that pointing accuracies on
the order of (object size divided by range) radians may be sufficient,
say 5 milliradians for purposes of discussion, then the physical
vectors need only be measured to roughly 10 times better accuracy
(0.5 milliradians) so as not to limit the accuracy of the overall
system by ReAtMent system performance. This rule-of-thumb is based
on the author's experience and should be investigated by a parametric
study of the particular application in which the performance of
all elements of the overall system are taken into account.

Quite often the physical vector measurement means will involve
mechanical attitude measurement to report the attitude of the measur-
ing sensor tracking the direction of the physical vector. This

facet of the problem must also be addressed by considering the output
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. of the directional sensor to be the final direction reported by
'm the measurement sytem to the computational means.
- 4. COMPUTATIONAL MEANS:

For all practical purposes, the author's experience has indicated

: that the computational accuracy requirements are easily met by the
'I hardware readily available today. In general, quantities will not be
measured to much more than 12 or 16 bit precision. Thus the use of a
machine with a 32 bit real word length (1 bit sign, 24 bit mantissa,
1 bit exponent sign and 6 bit exponent) is quite adequate for ReAtMent

computations.
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The speed requirement for performing the necessary computations,
however, may be quite another matter. To illustrate the amount of com-
putations required, follow the analysis of the Two Vector Method given

in chapter II. The formation of the two difference vectors, takes 6

additions. The formation of the crossproduct of these difference
vectors takes 6 multiplications and 3 additions. Normalizing this

result to obtain the PAR requires 3 multiplications, 2 additions, 1

square root, and 3 divisions. Computing s takes 3 multiplications and 2

2

R LA

additions. Computing G takes 3 multiplications and 3 additions.
Computing H also takes 3 multiplications and 3 additions. Computing G
H takes 3 multiplications and 2 additions. Computing IG X Hl takes 9
multiplications, 5 additions and 1 square root. Computing the AR

with these results takes 1 division and 1 arctangent. Somewhat

F? better accuracy can be obtained by normalizing the two difference
N vectors, G, and H immediately after they are calculated, adding a
é; total of 12 multiplications, 8 additions, 4 square roots, and 12
—
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divisions to the procedure. Thus the total number of operations just
to compute the Two Vector Method is 42 multiplications, 34 additions,
6 square roots, 16 divisions, and 1 arctangent.

To calculate the attitude matrix, equation 2.14, given the
PAR and AR, requires 1 division, 31 multiplications, 12 additions, 2
sines, and 1 cosine, assuming that the sin(AR), sinZ(AR/Z), and
cosz(AR/Z) terms are computed only once. This attitude matrix must
now be used to operate on the vector describing the reported direction
to the object which takes another 9 multiplications and 6 additions.
Multiplying this unit vector by the range to the object from the
sensor and subtracting the vector to the other platform results in
another 3 multiplications and 3 additions. (This solves the 3 dimen-
sional triangle in the coordinate system of the platform which detected
the object.) Normalizing the result to give a vector command to
the device to be pointed requires yet another 3 multiplications, 2
additions, 1 square root, and 3 divisions.

Thus to perform one full ReAtMent computation requires a grand
total of 88 multiplications, 58 additions, 7 square roots, 19 divisions,
1 arctangent, 1 cosine and 2 sines. For any given computer system,
the average time to perform each of these functions is usually speci-
fied. Thus it is possible to compute the total average time required
to perform a ReAtMent calculation after all data has been fed into the
computational means. The required update rate for pointing the device
at the object determines the processing speed required by the compu-
tational means. Some consideration should also be given to the form of

the data reported by the physical vector measurement means, the object
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direction measurement means, and the postion measurement means as

well as the form of the command for the device to be pointed. Often
these inputs and outputs are available in the form of two angles.
Therefore, some conversion must take place to express these in unit
vector form. The most logical place to do this is in the computer
itself as leaving the data in the form of only two rather than three
guantities would reduce the data rate required of the communications
means.

Taking all of this into account, approximately 10 to 15 percent
should be added to the minimum calculated time to allow for overhead
in the programming. This discussion gives a rough idea of the computa-
tional effort involved in implementing a ReAtMent system for the case
where the measured physical vectors are simple and discrete (i.e they
consist of only one pixel). For the probabilistic case, as discussed
above in section I of chapter III on analyzing the Two Vector Method
in terms of probabilistic vectors, all combinations of the pixels of
the 4 measurements of the two physical vectors would have to be used
to compute the PAR and AR for each case (including the check for
consistancy between the two possible values of the AR), each valid
result of this computation would then be used with all possible
combinations of the pixels in the probabilistic vector representing
the direction to the object would then be used to construct the
probabilistic vector representing the computed direction to the
object. This process obviously would involve a very considerable

amount of calculation, but may be necessary in some cases for par-

ticular applications.




A highly efficient and compact program can be written for a
dedicated computational means in a combination of hardware and firm-
ware. This combination uses firmware to take advantage of the machine
architecture to minimize the number of operations and hence the time
required. For example, this might involve routing an incoming number
directly from the input/output bus into one of the data inputs of the
arithmetic logic unit (the part of the processor which actually
performs the arithmetic functions) rather than first storing the data
from the input/output bus in memory and then reading it from memory
into the arithmetic logic unit. ODedicated input/output driver hard-
ware might be used to perform the necessary code conversions between
the data format used by the communication means and the format used by
the computer. This form of programming produces the absolute maximum
possible speed in performing the required computations, but requires
both a dedicated computer and an extraordinary amount of programming
effort.

The next best choice is to write the program entirely in assembly
lanquage using available firmware commands wherever possibie. This
also involves a great deal of programming effort, but can produce a

very rapid computation. One step further along the same option is to

use prewritten general purpose routines to perform the input/output

v

functions and standard mathematical procedures (e.g., the square root).
The main advantages to this use of assembly language is that proper
structuring of the program can minimize the overhead associc.ed with
the use of subroutines and subscripted variables. This can save

approximately 5 to 10 percent of the time and storage required if the
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program were written in a high level language.

The use of a high level language, such as FORTRAN or ALGOL
results in a considerable reduction in programming time and effort
over the use of assembly language. The major reason for this is that
the program can be written in modularized segments which can be
individually tested and linked together by an executive routine.
Also, special functions, such as sine, square root, and format con-
version are built into the language.

Perhaps the easiest language to write the required programs in is
BASIC. This 1language is an interpretive, interactive language with
built in special functions which makes transliating the program
flowchart into code straightforward and relatively easy. Debugging is
greatly facilitated by the interactive nature of the language.
The price paid is in execution time. The program source code is
"thought about anew, line by line by line by line ..."(after an
overall symbol table has heen developed) each time the program is
executed. This results in a program written in BASIC running as much
as several hundred times slower than if the program were written in
ALGOL or FORTRAN, and as much as a few thousand times slower than if
assembly language is used.

Thus it is apparent that the choice of the programming language
used involves a tradeoff between the time required for performing
the programming and executing the program. The gquestion of using a
dedicated processor, microcomputer, ¢-neral purpose minicomputer, or
large scale computer in a timeshare or batch mode is also a tradeoff
between processing speed, cost, size, and weight constraints, and

69

WP Y WD S TS P L. WL L AP P Y U SN 4 . Dot "




-

r ,r,,,
SR~ A

\

.w‘f--,-v,,h,,“,
LS. L

v .f-""

T
]

I o

availability. For example, consider a remotely controllied machine
tool in a factory which is required to measure its attitude relative
to the workpiece. This application can be met by having one set of
physical vector measurement means on the workpiece and another set on
the tool, both linked to a central computer. Since time is not
critical, but high accuracy is, the appropriate choice would probably
be to use a general purpose minicomputer programmed in a high level
language. In contrast, consider a problem where a satellite must point
a narrow beamwidth communication device at an approaching spacecraft
already in contact with another satellite. The need for high speed
updates to the pointed device, because of rapid changes in the satel-
lite's attitude, combined with the size, weight, and power restrictions,
makes a dedicated processor with firmware and special hardware the
appropriate choice for the computational means of the ReAtMent system.
5. OBJECT DIRECTION AND RANGE MEASUREMENT MEANS

This subsystem (in combination with the position measurement
means) determines the net accuracy of the solution to the three
dimensional triangle between the two platforms and the detected
object. Obviously, the first consideration is to select the appro-
priate technology to detect and track the object. The next step is to
integrate this with a means of determining the range to the object.
Finally, as mentioned above in the discussion of the postion measure-
ment means, the object direction and range measurement means must be
able to determine the relative location of the object to within the
volume of the object if the three dimensional triangle solved by the
ReAtMent system is to correspond to the actual physical situation.
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In contrast to the position measurement means, the object di-
rection and range measurement means must be located on one of the
platforms. This subjects this subsystem to the constraints of size
and weight imposed by the platform.

6. COMMUNICATIONS MEANS

The separation between the two platforms requires that some
means be used to communicate between them. The communications net may
also include another station where the computational and/or position
measurement means are located. The data that must be transferred by
the communications means consists mainly of angular measurements (at
most 6 sets corresponding to the 4 physical vector measurements, the
direction to the object, and the pointing command) and range measure-
ments (at least the separation between the platforms and the range to
the object). The amount of data transférred is also dependent on
the number of pixels in each probabilistic vector. Given the required
update rate of the ReAtMent system, it is possible to estimate the
minimum necessary capacity of the communications means in terms of
bits per second.

This will only be a first approximation as there are other
factors which will influence the selection of the communications
means. One major factor is the selection of the technology to be
used. Aside from the conventional radio data links, it may be desir-
able to use optical data links, or even hard wire systems. Potential
interference with the other subsystems of the ReAtMent system is al<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>